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 Abstract 
 
In this study, the implantation of a new semi-analytical method called the optimal auxiliary function method (OAFM) has been 
extended to partial differential equations. The adopted method was tested upon for approximate solution of generalized modified 
b-equation. The first-order numerical solution obtained by OAFM has been compared with the variational homotopy perturbation 
method (VHPM). The method possesses the auxiliary function and control parameters which can be easily handled during 
simulation of the nonlinear problem. From the numerical and graphical results, we concluded the method is very effective and 
easy to implement for the nonlinear PDEs. 
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1. Introduction 
 

Differential equations (DE) play a vital role in applied science and engineering. PDEs have a variety of 
applications in optics, hydrodynamics electromagnetism, economics, financial mathematics, and computer 
science. Usually, nonlinear PDEs don’t have the exact solutions, therefore the researchers adopted different 
approaches for the approximate solution. In such difficult cases, it’s so much tough to obtain the exact 
solution of these nonlinear differential equations. Therefore, a different method has been used in literature for 
these types of equations [1-5].  
In the same research field, we extend the implementation of the OAFM partial differential equations and 
applied for the approximate solution of modified b-equation.  This planed method was introduced by Marinca 
et.al and used for the solution for the fluid model [6]. Later on, the proposed method was used by researchers 
for different problems in the field of applied mathematics [7-10]. We aim to apply the proposed method to the 
generalized modified b  –equation. The proposed model was introduced by Wazwaz [11] to study a family of 



Approximate Solution of Generalized Modified ܾ-Equation by Optimal Auxiliary Function Method                                                                 103 

 
 

the important physical equation, namely called modified b –equation. The modified b-equation is given as 
follow,  

  
 

3 2 2
2

3 2 2

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )1 ( , ) 0,t t t t t t tb t b             
 

       
      

     
                      (1) 

In eq. (1) b is a positive integer. For b =3, eq. (1) is reduced to modified camassa holom (mCH) equation, 
while, for b=4 eq. (1) reduced to modified Degpress (mDP) equation. The modified b-equation has been 
studied by different methods in the series of papers [12-14].  
 

2. OAFM Methodology for PDEs 
 

The extended for of OAFM for partial differential equation has been discussed in the following steps. Let  
                                                 ( , ) ( , ) ( , ) 0,L f N                                                                (2) 

subject to the boundary condition 

                                                                        , .


   
                                             (3) 

Hence L , f and N presents a linear operator, a known function, and a nonlinear operator respectively. 
Step1: To find the approximate solution of Eq. (2), Let the approximate solution can be expressed in the form 
of two components given, 
                                                       0 1( , ) ( , ) ( , , ), 1, 2,......iC i                               (4) 
Step 2: To find the initial and the first approximation, we substitute Eq. (4) into Eq. (2), it results in 
                                            0 1 0 1( , ) ( , , ) ( , ) ( , ) ( , , ) 0.i iL L C f N C                                   (5) 

Step 3: To obtain 0 ( , )   and first order solution 1( , )   , we consider the following linear equations: 

                                                       0
0 0( , ) ( , ) 0, , 0,L f 

     


      
                   (6) 

                                                    1
1 0 1 1( , , ) ( , ) ( , , ) 0, , 0.i iL C N C 

         


       
                 (7) 

Step 4: The nonlinear term from eq. (7) is expanded in the form of 

                                                   ( )1
0 1 0 0

1
( , ) ( , , ) ( , ) ( , ) .

!

k
k

i
k

N C N N
k


           




                              (8) 

Step 5: Equation (7) is very difficult to solve, so we propose another expression for controlling and 
accelerating the convergence of the method. So, eq. (7) can be written as 

                                            
     1 1 0 0 2 0

1
1

( , , ) ( , ) ( , ) ( , ), 0,

, 0,

i jL C N C           






      
    

                         (9) 

 
Remark 1: In Eq.(9), 1 and 2 are known auxiliary functions, that can be chosen based on initial guesses 

and unknown parameters iC  and ,jC 1,2,3...,i  1, 2,3,..pj s s   . 
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Remark 2: 1 and 2 are not unique and are of the same form like 0 ( , )   are the form of  0 ( , )N     or 

the combination of both 0 ( , )    and  0 ( , )N    . 

 
Remark 3:  

(1).  If 0 ( , )   or  0 ( , )N     a polynomial function, exponential function, or trigonometric function 

then the corresponding auxiliary functions should be the sum of polynomial, exponential or 
trigonometric functions.  

(2).    If in special case  0 ( , ) 0N      then it is clear that 0 ( , )   is an exact solution of Eq. (2). 

 
Step 6: For calculating the iC and jC , we use the method of least square, by minimizing the square residual 

error: 

                                                                  2

0

, , ; , ,
t

i j i jJ C C R x t C C dxdt


                                          (10) 

Hence, R is the residual i.e 
                   , , , , , , ( , ) , , , , 1, 2,.. , 1, 2,.. ,i j i j i jR C C L C C f N C C i s j S S p                     

    (11) 

 
3. Applications of the Method 

 
In this section, the adopted method is used for the numerical solution of the mCH and DP equation. 
Additionally, we used the Mathematica 11.0 and Math type for huge computational work. 
 
3.1. Modified Camassa-Holm Equation (mCH) 

 
1st consider Modified Camassa-Holm Equation with initial condition and Exact solution as:     

            
3 2 2

2
2 2 2

( , ) ( , ) ( , ) ( , ) ( , ) ( , )3 2 0,                 
 

      
     

    
      

                        (12) 

subject to initial condition 

 2 1( ,0) 2sech .
2

      
 

                     (13) 

In eq. (12) linear and nonlinear are given as 
( , )[ ( , )] .L     






                      (14) 

 [( , )] 0.f                           (15) 

 
3 2 2

2
2 2 23 2 .N

x t x x x x
    

  
    

    
     

                                                           (16) 

The initial approximate 0 ( , )   is obtained from eq. (6). 

  20
0

( , ) 10, ( ,0) 2sech .
2

  
  


        

                                                                 (17) 
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The solution of eq. (4.4) is  

         2
0

1( , ) 2sech .
2

       
 

                                                      (18) 

use eq. (18) into eq. (16), the nonlinear operator becomes 

  6 2 4 2 2
0

2 4 2 3

( , ) 24sech tanh 4sech tanh sech 2sech tanh
2 2 2 2 2 2 2

2sech 4sech tanh 2sech tanh .
2 2 2 2 2

N         

    

                                            
                      

          

  (19) 

 
The first approximation 1( , )   is given by eq. (9) 

        1
1 0 0 2 0

1

( , ) ( , ) ( , ) ( , ), 0,

( ,0) 0,

jN C           


 

      


                                              (20) 

Here we choose 1 and 2  as 

      

2 4

1 1 2

6 8

2 3 4

sech sech
2 2

sech sech .
2 2

C C

C C

 

 

                       


                      

                   (21) 

Using eq. (19), and (21) into Eq. (18), we get the first approximation as  

         

6 8 6 2
1 3 4 1

6 4 4 2 3
2 1

( , ) sech sech 12 sech sech tanh
2 2 2 2 2

12 sech sech tanh 12 sech sech tanh .
2 2 2 2 2 2

C C C

C C

         

     
 

                     
         

                       
           

                (22) 

Adding eq. (18) and eq. (22) we get 1st order approximate solution as 

   

2 6 8 6 2
3 4 1

6 4 4 2 3
2 1

1( , ) 2sech sech sech 12 sech sech
2 2 2 2 2

tanh 12 sech sech tanh 12 sech sech tanh .
2 2 2 2 2 2 2

C C C

C C

         

      
 

                       
         

                           
             



               (23)

  
 

3.2.  Modified Degasperis-Procesi (mDP) 
 
First consider Modified Degasperis-Procesi with initial condition and exact solution as:   

             
3 2 2

2
2 2 2

( , ) ( , ) ( , ) ( , ) ( , ) ( , )4 3 0,                 
 

      
     

    
      

                       (24) 

subject to initial condition, 

               215 1( ,0) sech .
8 2

      
 

                    (25) 

Terms to be consider in eq. (24) as, 
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  ( , )( , ) ,L     






                                   (26) 

 
3 2 2

2
2 2 2( , ) 4 3 ,N     

    
     
    

    
     

                                                (27) 

The initial approximate 0 ( , )   is obtained from eq. (6) 

20
0

( , ) 15 10, ( ,0) sech .
8 2

t 
  


        

                                                                 (28) 

The solution of eq. (28) is  

         2
0

15 1( , ) sech .
8 2

t      
 

                                                             (29) 

use eq. (29) into eq. (27), the nonlinear operator becomes, 

               

  6 2
0

4 2 2 2

4 2 3

3375 45( , ) sech tanh sech tanh
128 2 2 8 2 2

15 15 15sech sech tanh sech
16 2 8 2 2 8 2

15 15sech tanh sech tanh
4 2 2 8 2 2

N t     

   

   

               
       

                         
                

       
. 

 

                    (30) 

The first approximation 1( , )   is given by eq. (9) 

        1
1 0 0 2 0

1

( , ) ( , ) ( , ) ( , ), 0,

( ,0) 0,

jN C           


 

      


                                              (31) 

Here we again choose 1 and 2  similar as shown in above problem 

      

2 4

1 1 2

6 8

2 3 4

sech sech
2 2

sech sech .
2 2

C C

C C

 

 

                       


                      

                  (32) 

Using eq. (29), and (30) into Eq. (31), we get the first approximation as  

      

  6 8 6 2
1 3 4 1

6 4 4 2
2 1

2

, sech sech 14.0625 sech sech tanh
2 2 2 2 2

14.0625 sech sech tanh 14.0625 sech sech
2 2 2 2 2

tanh 14.0625 sec
2

C C C

C C

C

    
     

     

 

                    
         

                   
         

  
 

4 4h sech tanh .
2 2 2
       
     
     

             (33) 

Adding eq. (29) and eq. (33) we get 1st order approximate solution as 
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2 6 8 6
3 4 1

2 6 4
2 1

4 2

15 1( , ) sech sech sech 14.0625 sech
8 2 2 2 2

sech tanh 14.0625 sech sech tanh 14.0625
2 2 2 2 2

sech sech tanh
2 2

C C C

C C

  
      

     

  

                  
       

                   
         
   
   
   



4 4
214.0625 sech sech tanh .

2 2 2 2
C                 

       

               (34) 

 
4. Numerical Results 

 
We exhibit the correctness of our process for the provided equations and comparison with the VHPM for 
different values .  

Result (1). To find the values of unknown parameters , 1,2,3..iC i   we used the collection method.  

1 2

3 4

0.4921659704908877, 0.2606759872371297,
0.05781845184781508, 0.10563165777129231

C C
C C

  
   

                (35) 

By substituting these values in Eq. (23), we obtained the first-order solution for the mCH equation. 
Result (2). similarly, we used the collection method for finding values of , 1,2,3..iC i   which are 
given as follow, 

  1 2

3 4

0.3875663632499093, 0.19320905798049545,
0.46302224355411176, 0.014099963170806097.

C C
C C

  
  

                                 (36) 

Using E. (36) eq. (34), we obtained the first-order solution for the DP equation. 
Numerical values are tabulated for first-order OAFM and VHPM solution for the mCH equation in 
tables (1-2) at 0.01   and 0.001  respectively. Tables (3-4) present the approximate solution of 
OAFM and VHPM solution for DP equation when 0.01   and 0.001  .  
 
Figures (1-3) present the 3D surfaces of first-order OAFM, VHPM, and exact solution for mCH 
equation respectively. Figures (4-6) show the 3D surfaces first order of OAFM, Exact solution, and 
VHPM solution for mDP equation respectively. Figures (7-8) show the comparison of 1st order 
OAFM, VHPM, and exact solution for mCH and mDP equation at 0.1   respectively. From the 
tabulated results and graphical we conclude that the OAFM solution is very closed to the exact 
solution as compared to VHPM. 
 
Table 1. 
Numerical results were obtained by first-order OAFM and VHPM solution 0.01  for the solution of 
the mCH equation. 
 

  OAFM Exact Abs Error VHPM [12] Abs Error OAFM 
-1.0 -1.56446 -1.5583 0.0197059 0.00616137 
-0.5 -1.87269 -1.87067 0.0166079 0.0020242 
0.5 -1.88476 -1.88908 0.0169162 0.00432592 
1.0 -1.57996 -1.58737 0.0198189 0.00741897 
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Table 2. 
Numerical results were obtained by first order OAFM and VHPM solution 0.001  for the solution 
of the mCH equation. 
 

  OAFM Exact Abs Error VHPM [12] Abs Error OAFM 
-1.0 -1.57232 -1.57144 0.00197555 0.00061118 
-0.5 -1.8793 -1.87911 0.00167455 0.000188656 
0.5 -1.8805 -1.88095 0.00167764 0.000446577 
1.0 -1.5736 -1.57435 0.00197668 0.000747114 

 
 
Table 3. 
Numerical results obtained by first-order OAFM and VHPM solution at 0.01  for the solution of the 
mDP equation. 
 

  OAFM  Exact  Abs Error VHPM [12] Abs Error OAFM 
-1.0 -1.46494 -1.45747 0.0230771 0.00747007 
-0.5 -1.7529 -1.75151 0.019418 0.00138805 
0.5 -1.76468 -1.77309 0.0198696 0.00840817 
1.0 -1.47984 -1.49154 0.0232427 0.011701 

 
 
Table 4. 
Numerical results obtained by first order OAFM and VHPM solution at 0.001  for the solution of 
mDP equation. 
 

  OAFM Exact Abs Error VHPM [12] Abs Error OAFM 
-1. -1.47362 -1.47289 0.00231493 0.000739793 
-0.5 -1.76157 -1.76145 0.00196192 0.000118684 
0.5 -1.76247 -1.7636 0.00196643 0.000861343 
1. -1.47511 -1.47629 0.00231658 0.00117779 

 
 
 
 
 

 

 

 

 

 

 

Figure 1: First order OAFM solution for 
mCH equation 

Figure 2: Exact solution for mCH 
equation Figure 3: First order VHPM solution for 

mCH equation 
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5. Conclusion 
 

In this work, the suggested method test for the approximate solution of mCH and mDP equations. The 
numerical results have been compared with VHPM. From the results, we conclude that OAFM converges 
rapidly than VHPM after only one iteration.     
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