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Abstract

We have inspected the effects of solid falling particles passing past circular obstacles in particulate flows and the disturbance created in
fluid due to such particle motion. Particle interactions with obstacles present inside the domain, with the outer boundary and with the fluid
is investigated. Eulerian technique which uses a fixed computational mesh is adopted through which the freely moving particles pass and
interact with the surroundings. The coupled system of solid particle and viscous fluid inside the whole domain is numerically handled using
fictitious boundary method (FBM). Lubrication collision models are presented to handle particle-obstacle and particle-wall interactions.
FEATFLOW, which is an open source multigrid finite element solver, is used to compute the particulate flow. Numerical experiments are
performed taking into account different particle positions and different alignments of circular cylinders (obstacles). Effects of particle
motion on the drag forces near the obstacles and on the physical behavior of the fluid-particle-obstacle system due to the particle-wall,
particle-obstacle and particle-fluid interactions has been analyzed.
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1. Introduction

A lot of naturally occurring and manufacturing processes are visible while examining the interaction
of particles in fluid such as agglomeration, multiphase flows, sedimentation and granular flows. In a
situation of large number of particles, collisions of a particle with other particles and their interaction
with obstacles inside the domain are involved. A particular example can be observed where tiny clay
particles and sediments of sand, present in the fluid, flow and interact with the pillars of a bridge in a
river. Other practical examples from engineering point of view can be found in fluid interacting with
internal rigid boundaries such as in hanging electrical transmission lines and poles, high rise buildings
standing inside the atmospheric air. An underlying knowledge is lacking for the study of such particle
interactions with obstacles in a domain which results in different formations of particle trajectories and
drag analysis across the obstacles followed by the particle collisions in the modeling of particulate flow [1].
To inspect the solid-liquid flows [2] various numerical approaches have been adopted over the last years.
The phenomena of particulate flow is mainly modeled by employing two approaches, either the continuum
or the discrete approach. Continuum approach considers the whole mass of the particle as a synthetic
continuum which works specifically for flow regimes and is based on the solution of the underlying
conservation equations [3]. Fast granular flow and steady granular flow concepts have been presented
successfully by Chapman, Ogawa and Rao et al. [3], [4]. Recently a level set methodology has been used
by Sokolov and coauthors [5] for solving partial differential equations coupled with manifold/surfaces.
The other approach, known as the discrete approach, takes into account the motion of individual particle.
The discrete element method (DEM) is one of the important examples of discrete model in simulating
particulate flows. Simple flows are well established using the discrete element method. The interaction of
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all the particles with their environment and with each other is modeled in this method which is followed
by calculating their trajectories, orientations and spins [6]. A broad spectrum of industrial problems have
been discussed using two dimensional (2D) and three dimensional (3D) DEM simulations [7].
The discrete approach discussed above is further mainly categorized into two approaches for the simulation
of particulate flow, (i) the Eulerian approach (ii) and the Lagrangian approach. In Eulerian approach, the
whole domain is covered by the fluid and uses a fixed background mesh which is independent of particle
parameters. Based on this approach, Joseph and Glowinski proposed a technique [8]. In Lagrangian
approach, the concept of a moving mesh is used in which the nodes move along with the motion of
the particle boundary. A modification of this approach is referred to as Arbitrary Lagrangian Eulerian
Approach (ALE) [9]. Eulerian approach has the advantage that the mesh remains constant and focuses to
get high numerical approximation through acceptable computational cost. On the other hand, Lagrangian
approach gives very acuurate results but the simulation cost is high. In the technique proposed by
Glowinski and Singh [10], FEM based background grid supports the particle contained fluid domain in
Eulerian approach where the solid particles are treated separately through Newton-Euler equations. The
complete solution of Navier-Stokes equations for the coupled system of fluid and particle is achieved
using the fictitious boundary method (FBM) [11], [12], [13], [14], [15] such that the the fluid and particles
interfaces are viewed as additional constraints for an internal boundary in the fluid domain retaining the
same computational domain which remains fixed. On the other hand, computational grid is reshaped in
ALE approach and the mesh nodes are accumulated more near the fluid particle interface and the process
is moved forward with adopting a replaced mesh. A particular handling of such a method is discussed
using the distributed Lagrange multiplier method (DLM) and the fictitious boundary method [16], [17],
[18] developed by Glowinski [8]. A stress field in the particle domain, introduced by Patankar et al. [19]
combined with the DLM method, removed the necessity to calculate the translational and angular velocity
of the moving particles. Sangani introduced a DLM based formulation using a control volume method
[20] for steady stokes flow. Abbasi et al. [21], [22] analyzed the phenomenon when multiple structures
are in wake of one another, the mechanism depends upon the adjustment, gap distance, shape and size of
structures. Inoue et al.[23] implanted a technique based on finite difference method in order to find the
solution of 2D unsteady compressible Navier-Stokes equation and analyzed the wake achieved by two
square obstacles arranged on staggered positions by considering space effect between them in a uniform
flow at low Mach numbers. Wang et al.[24] considered computational mesh as a horizontal soap film
tunnel along with two circular obstacles placed in staggered positions.
In order to prevent the complicated collisions of the particles with each other, channel wall and internal
obstacles, a true definition for the collision model [27] is needed because collision or near collision of the
solid rigid particles can cause extreme problems in case the rigid particles are very close to each other and
thus remarkably increase the evaluation and cost of simulation [28]. Recently, Usman [29] presented a
brief comparison of distinct collision models for circular rigid particles in a two dimensional framework
in fluid channel. In other observations, researchers have concluded that for rough particles, physical
touching might happen which may consequently effect the dependent motion of the rigid solid particles
[30]. Ardekani and Rangel [31] used distributed Lagrange multiplier approach to simulate unsteady
motion and collision of two particles in fluid having a dilute suspension with control volume approach
[32]. A simple algorithm to simulate colliding particles has been discussed by Patankar [33].
The present study focuses on the numerical investigations for the rapid change in drag forces on the interior
obstacles while the particle crosses the obstacles and change in the motion of fluid and its behavior due to
interacting falling circular particle. Impact of wall of the domain and obstacles on the trajectories of the
particle are also studied in fluid flow. Fictitious boundary method [34] is acquired to achieve the solution
of viscous incompressible fluid flow and the moving solid particles, which is a direct simulation technique.
The well known Eulerian technique, which is independent of particle shape, number of particles and
particle size, is used to solve the problem of fluid and particle system in particulate flow.

2. Mathematical Modeling

Consider fluid flow along with a solid particle having mass Ms and density ρs. ρ f is the fluid density
and ν represents the fluid viscosity. The domain occupied by the fluid is Ω f and the domain occupied
by the particle is Ωs and ∂Ωs represents boundary of the particle. Hence, the total domain is given by
ΩT = Ω f ∪Ωs

2.1. Incompressible Fluid and Particle Motion

The motion of incompressible fluid in the domain Ω f is governed by the Navier-Stokes equations [35],
[36]
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ρ f

(
∂uuu
∂ t

+uuu ·∇uuu
)
−∇ ·σ = 0, ∇ ·uuu = 0 ∀t ∈ (0,T ), (2.1)

where σ is the total stress tensor in the fluid phase, defined as,

σ =−pIII +µ f

[
∇uuu+(∇uuu)T

]
. (2.2)

Here, fluid velocity is uuu, p is the pressure, coefficient of viscosity is µ f and III is the identity tensor.
The translational and rotational motion of the freely moving rigid particle in fluid is due to the hydro-
dynamic forces, collision forces due to particle and outer wall and particle-cylinder interaction and
gravitational acceleration. The Newton-Euler equations, in this case, takes the form

Ms
dUUU s

dt
= (△Ms)ggg+FFFs +FFF ′

s, IIIs
dωs

dt
+ωs × (IIIsωs) = TTT s. (2.3)

UUU s and ωs respectively are the translational and angular velocities of the particle, Ms is the particle mass
and we write △Ms = Ms −M f , where M f is the mass occupied by the fluid in the same volume as Ms.
Drag and lift forces acting on the particle are represented by FFFs, FFF ′

s are the particle collision forces, the
moment of inertia tensor and the resultant torque acting about the center of mass of the particle is IIIs and
TTT s respectively and ggg denotes the gravitational acceleration.
The position XXX s of the center of mass of the particle and its angle θs can be obtained after integrating the
following kinematic equations [37], [38],

dXXX s

dt
=UUU s,

dθs

dt
= ωs. (2.4)

2.2. Drag and Lift Hydrodynamic Forces and Torque

The drag and lift forces FFFs and the torque TTT s acting on the mass center of the particle can be obtained by
[39]

FFFs = (−1)
∫

∂Ωs

(σ .nnn)dΓs, TTT s = (−1)
∫

∂Ωs

(XXX −XXX s)× (σ ·nnn)dΓs. (2.5)

where the unit vector nnn acts normal to the boundary ∂Ωs of the particle. Once the drag force is calculated,
the drag and lift coefficients can be found using

Cd =
2FD

ρU2D
, Cl =

2FL

ρU2D
, (2.6)

where U and D is the characteristic velocity and length respectively.

2.3. Fluid-Particle Coupling using Fictitious Boundary Method

At the fluid and particle interface ∂Ωs, no-slip boundary conditions are applied and the velocity
uuus(((XXX))) ∀ XXX ∈ Ωs is given by,

uuus (XXX) =UUU s +ωs × (XXX −XXX s) . (2.7)

The fictitious boundary method (FBM) works over a multigrid finite element method by incorporating the
particle domain within the fluid domain. The additional constraints arising due to the particle’s boundary
motion at the particle-fluid interface are included in the Navier-Stokes equations, by extending the fluid
domain with the combined fluid and particle domain, which takes the form,

∇.uuu = 0 ∀X ∈ ΩT
ρ f (

∂uuu
∂ t +uuu.∇uuu)−∇.σ = 0 ∀X ∈ Ω f

uuu(((XXX))) =UUU s +ωs × (XXX −XXX s) ∀X ∈ Ωs.
(2.8)
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2.4. Particle Collisions

We will use a collision model for the calculation of particle-wall collision forces FW
s presented by

Glowinski, Joseph, Singh and coauthors [10] and present a modified model for the particle-cylinder
collision forces Fc

s . Therefore, FFF ′
s = FFFc

s +FFFW
s .

Particle-Cylinder Collision Model

We have introduced a small change in the collision model for interacting particle and cylinder proposed in
[10], that is, we have considered the circular cylinder as a second particle and hence the model takes the
form

FFFc
s =


0, f or Ds,c > Rs +Rc +ρ,
1
εp
(XXX s −−−XXXc)(Rs +Rc +ρ −Ds,c)

2 , f or Rs +Rc ≤ Ds,c ≤ Rs +Rc +ρ,
1
ε ′p
(XXX s −−−XXXc)(Rs +Rc −Ds,c) , f or Ds,c ≤ Rs +Rc

(2.9)

the coordinates of the center of the cylinder are XXXc and Rs and Rc denotes the radius of particle and
cylinder respectively. The distance between XXX s and XXXc is Ds,c = |XXX s −−−XXXc|. ρ is the minimum distance to
activate the force of repulsion between particle and cylinder and is taken one mesh element apart. Values
for the positive stiffness parameters εp and ε ′p are chosen as such to avoid discontinuity or singularity.

Particle-Wall Collision Model

For particle-wall collision model, the corresponding model is expressed by [10]

FFFW
s =


0, f or D

′
s > 2Rs +ρ,

1
εω

(
XXX s −XXX

′
s

)(
2Rs +ρ −D

′
s

)2
, f or 2Rs ≤ D

′
s ≤ 2Rs +ρ,

1
ε ′ω

(
XXX s −XXX

′
s

)(
2Rs −D

′
s

)
, f or D

′
s ≤ 2Rs

(2.10)

where XXX
′
s is the coordinate of the center of mass of the nearest imaginary particle p

′
s imagined on the

boundary wall with respect to the particle. D
′
s = |XXX s −XXX

′
s| is the distance between the center of the

imaginary particle p
′
s and the mass center of particle. εw and ε

′
w are small positive stiffness parameters for

particle-wall collisions, usually their values can be taken as εw =
εp

2
and ε

′
w =

ε
′
p

2
in the calculations.

3. Numerical Results

We have examined the behavior of a falling particle inside a vertical channel passing across four internal
circular obstacles. When the falling particle crosses the obstacles, it disturbs the pressure field and
consequently disturbs the fluid motion as well as the hydrodynamic drag and lift forces acting on the
surface of obstacles. The disturbance propagates further when particle move forward. The collisions
and overlapping of particle with obstacles and with the outer wall are avoided using collision models
discussed in equation (2.9) and equation (2.10). The width and height of the computational channel is 3
and 15 as shown in figure 3.1a and 3.1b. The moving rigid 2D particle has density ρs = 1.25. Density of
incompressible fluid is taken ρ f = 1.0 and the Reynolds number is Re = 100. In numerical simulations,
we consider the particle of radius R = 0.25. We consider that initially at t = 0 the fluid and particle are
both at rest. The falling motion is started only due to the gravitational acceleration ggg = 980. Zero dirichlet
boundary conditions at the walls of the channel are assumed. The simulations are performed on fixed
equidistant meshes using CFD code FEATFLOW [40].
The simulations are performed on mesh refinement level-5 comprising of 146,432 number of elements.
Mesh independence is guaranteed at refinement level-5. The experiments are performed keeping three
different initial positions of the particle in x-direction while retaining the same y position. First three
cases shown in figure 3.1 are performed keeping the cylinder configuration given by Coarse mesh 1
where the upper three cylinders are fixed (see figure 3.1), the cases 4-6 are performed keeping the
cylinder configuration given by Coarse mesh 2 again keeping the upper three cylinders fixed. A variety of
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configurations for the position of fourth obstacle are selected comprising of inline obstacles arrangement
and staggered obstacles arrangement with each other. Moreover, the study includes effect of increasing
space between two obstacles by moving the fourth obstacle along the y-direction at three different positions
and expanding the gap between them.
Different images in figure 3.1 show the position of particle at different time and the disturbance it creates
while falling down and crossing the obstacles. Obstacles are placed in an inline arrangement as shown in
figure 3.1c, figure 3.1d and figure 3.1e, similarly Obstacles are placed in an staggered arrangement as
shown in figure 3.1f, figure 3.1g and figure 3.1h while the initial x-positions of particle are 1.50, 1.55
and 1.60 respectively for all the cases. The particle is shown colliding and crossing the first and second
cylinder in figure 3.1d and figure 3.1e respectively.

(a) Coarse mesh 1 (b) Coarse mesh 2 (c) Case i (d) Case ii (e) Case iii (f) Case iv (g) Case v (h) Case vi

Figure 3.1: Schematic of different meshes with obstacles

Different images in figure 3.1 show the position of particle at different time and the disturbance it creates
while falling down and passing the obstacles. These are total 6 cases in which we have found numerical
results and simulations are performed, circular obstacles placed in inline and staggered arrangement are
as follows:
(i)(1.50,12.0), (1.50,9.0), (1.50,6.0), (1.50,3.0) (ii)(1.50,12.0), (1.50,9.0), (1.50,6.0), (1.50,4.0)
(iii)(1.50,12.0), (1.50,9.0), (1.50,6.0), (1.50,2.0) (iv)(1.0,12.0), (2.0,9.0), (1.0,6.0), (2.0,3.0)
(v)(1.0,12.0), (2.0,9.0), (1.0,6.0), (2.0,2.0) (vi)(1.0,12.0), (2.0,9.0), (1.0,6.0), (2.0,4.0)

(a) Case i (b) Case ii (c) Case iii (d) Case iv (e) Case v (f) Case vi

Figure 3.2: Trajectories of particle passing and crossing cylinders

Figure 3.2 shows trajectories of the falling particle starting from different initial positions and passing the
cylinders through the course. C1 and C2 denote the first and second cylinder respectively. Similarly, C1x
and C1y respectively represents the x-position and y-position of the first cylinder.
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Six meshes have been adopted having different arrangements of the cylinders for the study. In first three
meshes, C1x is fixed at position (1.5) and in meshes 4-6, C1x is fixed at position (1.0). C4y is taken at
three positions 2.0, 3.0 and 4.0 for all the cases. Figure 3.2(a) shows results when the cylinders are inline
i.e. C1 at position (1.5,12.0) and C4 at position (1.5,3.0) and the simulations are performed by taking
three particle starting positions (1.50,14.0), (1.55,14.0) and (1.60,14.0) shown in green, red and blue
lines respectively. It has been observed that when the starting position of the particle is (1.50,14.0), it
always passes from the left side of the first cylinder and may pass from left or right of the fourth cylinder
depending on the gap between the cylinders. C1x = 1.50 ensures that for the other two starting particle
positions except the starting particle position (1.5,14.0), the particle passes from the right side of the first
cylinder and for C1x = 1.50 the particle always passes from the left side of the first cylinder as noticeable
from figure 3.2. It has been concluded that the gap between the cylinders, starting position of the particle
and the inline/staggered arrangement of cylinders plays an important role while defining the paths for the
particles and the fluid motion.

Table 1: Case 1 with 4 obstacles

Particle
Position

Cd on C2 Cd on C3 t2 t4min max min max
1.50 -3.3472 2.7136 -3.3150 2.1469 0.192 0.093
1.55 -1.8778 4.3367 -3.9430 4.1884 0.165 0.198
1.60 -0.5700 5.0199 -3.6266 2.2387 0.177 0.105

Particle
Position

S2 S3 S4
min max min max min max

1.50 0.4779 — 0.6363 — 0.8006 —
1.55 — 2.2925 — 2.1755 — 2.7369
1.60 — 2.5116 — 2.6818 — 2.4408

Table 2: Case 2 with 4 obstacles

Particle
Position

Cd on C2 Cd on C3 t2 t4min max min max
1.50 -3.3138 2.7005 -3.6266 2.2387 0.192 0.093
1.55 -1.8694 4.3658 -3.8777 4.1629 0.168 0.120
1.60 -0.5084 5.0170 -3.6239 2.2037 0.105 0.177

Particle
Position

S2 S3 S4
min max min max min max

1.50 0.4819 — 0.6339 — 0.8313 —
1.55 — 2.2899 — 2.1800 — 2.3979
1.60 — 2.1510 — 2.6828 — 2.3500

Table 3: Case 3 with 4 obstacles

Particle
Position

Cd on C2 Cd on C3 t2 t4min max min max
1.50 -3.3834 2.6160 -3.4913 2.2619 0.186 0.093
1.55 -1.8245 4.5054 -4.0316 4.3156 0.165 0.108
1.60 -0.6283 5.0387 -3.7709 2.3287 0.108 0.093

Particle
Position

S2 S3 S4
min max min max min max

1.50 0.5213 — 0.6595 — 0.8372 —
1.55 — 2.2714 — 2.1733 — 2.0932
1.60 — 2.1500 — 2.6977 — 2.3490

Table 4: Case 4 with 4 Obstacles

Particle
Position

Cd on C2 Cd on C3 t2 t4min max min max
1.50 -4.9426 5.4015 -4.4172 4.8132 0.096 0.165
1.55 -4.8121 6.1664 -1.9383 2.8117 0.105 0.171
1.60 -4.4132 5.6758 -6.0258 3.9727 0.093 0.144
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Particle
Position

S2 S3 S4
min max min max max

1.50 1.2951 — — 2.1394 1.4285 —
1.55 1.1770 — — 2.0960 1.4406 —
1.60 1.4125 — — 1.8115 1.1587 —

Table 5: Case 5 with 4 Obstacles

Particle
Position

Cd on C2 Cd on C3 t2 t4min max min max
1.50 -4.9213 5.4056 -4.3006 4.9239 0.099 0.189
1.55 -4.1258 6.2198 -2.2576 2.9974 0.105 0.216
1.60 -4.4145 5.6588 -5.9977 4.3494 0.093 0.153

Particle
Position

S2 S3 S4
min max min max max

1.50 1.2910 — — 2.1067 1.3332 —
1.55 1.1987 — — 2.1362 1.2790 —
1.60 1.4129 — — 1.8115 1.2014 —

Table 6: Case 6 with 4 Obstacles

Particle
Position

Cd on C2 Cd on C3 t2 t4min max min max
1.50 -4.9618 5.3961 -4.7092 4.8608 0.096 0.198
1.55 -4.4861 6.1392 -2.0728 2.7670 0.105 0.144
1.60 -4.4402 5.6673 -6.0445 2.7578 0.093 0.159

Particle
Position

S2 S3 S4
min max min max max

1.50 1.3020 — — 2.1230 2.5394 —
1.55 1.1777 — — 2.1258 1.3216 —
1.60 1.4186 — — 1.7423 — 2.5337

In table 1, table 2, table 3, table 4, table 5 and table 6, t1 and t2 denote the time taken by the falling particle
when it comes in contact or interacts and crosses C1 and C2 respectively. s1 and s2 denote the minimum or
maximum x-shift achieved by the particle while crossing C1 and C2 respectively. More time is taken by
the particle to pass the cylinder if it collides while passing the cylinder and takes less time if it passes
without touching the cylinder. The fluid behavior across the circular cylinders also affects the motion of
the particle and contributes whether the particle will collide or not with the cylinder. If the x-shift attained
by the particle is more than 0.83 or less than 0.47 while passing and crossing the cylinder then it has
collided with the cylinder otherwise it suggests that the particle has passed without colliding the cylinder.

First two columns in figure 3.3 shows fluctuations in the drag coefficient when particle is passing by C1 and
C2. It can be seen that when the particle starts interacting with C1 and C2, the drag values instantly shoots
up to a very high value and after crossing the cylinder, gradually reaches its mean value (see figure 3.3(a)
and figure 3.3(b)). The third column of graphs in figure 3.3 shows oscillations of drag coefficient for
cylinder 3. It has been observed that the drag on C2 fluctuates when the particles passes across C1 and
disturbs the fluid motion. Figure 3.3 shows some selected cases for different configurations of cylinders.
Figure 3.3(a-c) presents result for inline cylinders case when C1 and C4 are at positions (1.5,12.0) and
(1.5,3.0) with particle starting position 1.50. Figure 3.3(d-f) presents result for inline cylinders case when
C1 and C4 are at positions (1.5,12.0) and (1.5,4.0) with particle starting position 1.55. Figure 3.3(g-i)
presents result for staggered cylinders case when C1 and C4 are at positions (1.0,12.0) and (2.0,3.0) with
particle starting position 1.60. Figure 3.3(j-l) presents result for staggered cylinders case when C1 and C4
are at position (1.0,12.0) and (2.0,2.0) with particle starting position at 1.55. Figure 3.3(m-o) presents
result for inline cylinders case when C1 and C4 are at positions (1.50,12.0) and (1.5,2.0) with particle
starting position 1.60. Other cases exhibit a similar pattern and are hence not shown.
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(a) Case i : Drag coefficient on C1 (b) Case i : Drag coefficient on C2 (c) Case i : Drag coefficient on C3

(d) Case ii : Drag coefficient on C1 (e) Case ii : Drag coefficient on C2 (f) Case ii : Drag coefficient on C3

(g) Case iii : Drag coefficient on C1 (h) Case iii : Drag coefficient on C2 (i) Case iii : Drag coefficient on C3

(j) Case iv : Drag coefficient on C1 (k) Case iv : Drag coefficient on C2 (l) Case iv : Drag coefficient on C3

(m) Case v : Drag coefficient on C1 (n) Case v : Drag coefficient on C2 (o) Case v : Drag coefficient on C3

(p) Case vi : Drag coefficient on C1 (q) Case vi : Drag coefficient on C2 (r) Case vi : Drag coefficient on C3

Figure 3.3: Drag on C1, C2 and C3 with gap 0.5



Solid Particle Interacting with Circular Obstacles 9

Drag1 and Drag2 displays the maximum and minimum values of drag coefficient in table 1, table 2,
table 3, table 4, table 5 and table 6 when the particle is crosses C1 and C2 respectively. Drag 2 1 denotes
the drag on C2 when particle is crossing C1. The drag values on cylinders C1 and C2 changes rapidly as
soon as the particle reaches near the cylinder and starts crossing it. The drag values are more extreme if
the particle crosses the cylinder while colliding as shown in table 1, table 2, table 3, table 4, table 5 and
table 6. The table shows that if the maximum drag value is above 7.5 or minimum drag value is below
-7.0 then the particle has collided while crossing the cylinder C1 or C2. The drag ’Drag 2 1’ on C2 due to
C1 when particle is crossing C1 shows fluctuations because the disturbance created in the fluid motion
due to particle crossing C1 spreads till and beyond C2. The gap distance between cylinders and cylinder’s
arrangement plays an important role in determining the drag ’Drag 2 1’ on C2 when particle crosses C1.

4. Conclusion

In this research work, we have performed numerical technique of a direct simulation method to stimulate
the particulate flow by using FBM. We have examined the behavior of falling particle under the action
of gravitational acceleration, the collision and interaction of particle with four obstacles within a fluid
flow channel. We have also discussed the behavior of obstacles. The first obstacle is fixed and the fourth
obstacle is placed at three different positions along y-direction. A solid particle which is falling from
three different positions, is interacting and colliding with all four obstacles during the course. We have
calculated the numerical results on the fixed computational mesh with refinement level-5 by taking three
different initial positions of particle. During the fall of rigid particle, we have examined the behavior of
fluid inside a channel while passing across the obstacles. We have examined this behavior using different
configuration of the circular obstacles, inline and staggered arrangements of obstacles which showed
different fluid behavior in a channel.
A specific collision model is also used for the collision of the particle and circular obstacles. Benefit of
this collision model is that it can treat the scenario when the particle interact and tend to slightly overlap
the obstacles due to numerical errors.

Nomenclature

Ms Mass of solid particle
ρs Density of particle
ρ f Density of fluid
ν Fluid viscosity
u Velocity of fluid
p Pressure
σ Stress tensor
I Identity tensor
Us velocity of solid particle
Xs Center of solid circular particle
θs Orientation of particle
ωs Angular velocity of particle
Fs Drag and lift forces acting on the particle
FFF ′

s Particle collision forces
g Gravitational acceleration
Cd Drag coefficient
FBM Fictitious boundary method
DNS Direct numerical simulation
FEM Finite element method
DLM Distributed lagrange multiplier method
DEM Discrete element method
CFD Computational fluid dynamics
ALE Arbitrary lagrangian eulerian approach
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