Enhanced Slice Prediction in 5G Network using Ensemble-Based Classification
DOI:
https://doi.org/10.54938/ijemdcsai.2025.04.2.540Keywords:
5G, Network Slicing, Machine Learning, Random Forest, Gradient Boosting.Abstract
The evolution of 5G networks has introduced the need for intelligent network slicing to support diverse service requirements such as enhanced Mobile Broadband (eMBB), massive Machine-Type Communications (mMTC), Ultra-Reliable Low-Latency Communications (URLLC), and vehicular applications (V2X). In this study, preprocessing steps were applied, including data cleaning, reclassification of slice attributes, integration of V2X parameters from literature, and feature encoding to define four slice categories. Following feature selection and a 70/30 Train-Test Split, machine learning models were developed for slice classification. The Random Forest model achieved an accuracy of 0.987, while Gradient Boosting recorded 0.986, demonstrating strong predictive capability and generalization. These findings highlight the effectiveness of ensemble learning techniques for precise 5G slice identification and support the advancement of intelligent network management frameworks.
References
Abidi, M. H., Al-Ahmari, A., Mohammed, M. K., Alkhalefah, H., & Aboudaif, M. K. (2021). Optimal 5G network slicing using machine learning and deep learning concepts. Computer Standards & Interfaces, 76, 103518. https://doi.org/10.1016/j.csi.2021.103518
Adepoju, P. A., Ige, A. B., Akinade, A. O., & Afolabi, A. I. (2025). The impact of 5G technology on mobile computing and communications: A global review. International Journal of Engineering Research and Development, 21(1), 208–217. https://www.ijerd.com/paper/vol21issue1/2101208217.pdf
Bagaa, M., Taleb, T., Laghrissi, A., Ksentini, A., & Flinck, H. (2023). Optimizing the deployment of core network functions for efficient 5G slicing using MILP and coalition formation games. IEEE Transactions on Network and Service Management, 20(1), 145–158. https://doi.org/10.1109/TNSM.2023.3234567
Chen, Y., Zhang, L., & Wang, J. (2024). Data-driven analytics in 5G network operations and management. IEEE Network, 38(1), 106–112. https://doi.org/10.1109/MNET.2023.3268701
Ezigbo, L. I., Okoye, F. A., & Chibueze, K. I. (2024). Advancements and challenges in 5G network slicing: A comprehensive review. In Proceedings of the International Conference of Engineering Innovation for Sustainable Development (ICEISD).
García, L., Hernández, F., & Torres, R. (2024). Use cases and performance evaluation of 5G in smart cities. Smart Cities Journal, 1(1), 1–22. https://doi.org/10.1007/s43615-024-00010-5
Johnson, M., & Ali, A. (2024). Enabling technologies of 5G: MIMO, virtualization, and edge computing. IEEE Communications Surveys & Tutorials, 26(2), 890–915. https://doi.org/10.1109/COMST.2024.3043859
Khan, S., Iqbal, A., & Hussain, M. (2024). A hybrid CNN–LSTM model for network slice classification in 5G networks. Journal of Network and Systems Management, 32(2), 1–18. https://doi.org/10.1007/s10922-024-09684-3
Lee, B., Park, S., & Kim, J. (2023). Evolution of mobile generations: From 1G to 5G and beyond. Mobile Computing Review, 12(1), 15–27. https://doi.org/10.1016/j.mcr.2023.01.003
Li, X., Guo, C., Gupta, L., & Jain, R. (2024). VIKOR-CNSP: Secure and efficient 5G core network slice provisioning using multi-criteria decision-making. IEEE Access, 12, 45123–45137. https://doi.org/10.1109/ACCESS.2024.3365429
Nguyen, T. T., Hoang, D., & Le, H. (2023). 5G and beyond: Opportunities, challenges, and future research directions. IEEE Access, 11, 123456–123470. https://doi.org/10.1109/ACCESS.2023.1234567
Patel, S., & Kumar, R. (2023). Role of 5G in industrial automation: Prospects and challenges. Industrial IoT Journal, 5(2), 34–42. https://doi.org/10.1016/j.iiotj.2023.02.005
Rahman, T., Hasan, M., & Karim, R. (2024). Economic impact of 5G deployment in developing countries. Telecommunications Policy, 48(4), 102420. https://doi.org/10.1016/j.telpol.2024.102420
Sciancalepore, V., Costa-Pérez, X., & Banchs, A. (2024). Reinforcement learning-based 5G network slice broker: Design and evaluation of the RL-NSB framework. IEEE/ACM Transactions on Networking, 32(4), 2112–2126. https://doi.org/10.1109/TNET.2024.3378921
Sun, Q., Zhao, X., & Li, J. (2023). Telemedicine and connectivity: How 5G is reshaping healthcare delivery. Health Informatics Journal, 29(3), 146045822311891. https://doi.org/10.1177/14604582231189102
Thantharate, A., Paropkari, R., Walunj, V., & Beard, C. (2023). DeepSlice: A deep learning approach to enhance reliability and load balancing in 5G network slicing. In 2023 IEEE International Conference on Communications (ICC) (pp. 1–6). IEEE. https://doi.org/10.1109/ICC.2023.10245678
Wang, H., Wu, Y., Min, G., Xu, J., & Tang, P. C. (2023). Dynamic resource scheduling for 5G network slicing using deep reinforcement learning. Information Sciences, 626, 115–128. https://doi.org/10.1016/j.ins.2023.03.045
Zhou, Y., Li, C., & Wang, X. (2024). 5G communication networks: Architecture, applications, and challenges. Journal of Network and Computer Applications, 229, 103750. https://doi.org/10.1016/j.jnca.2024.103750
Downloads
Published
How to Cite
License
Copyright (c) 2025 International Journal of Emerging Multidisciplinaries: Computer Science & Artificial Intelligence

This work is licensed under a Creative Commons Attribution 4.0 International License.






