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 Abstract 

 

This research investigates the integration of Explainable Artificial Intelligence (XAI) in maternal 

health risk prediction, with a focus on improving the transparency and clinical utility of predictive 

models. Maternal mortality persists as a global challenge, disproportionately affecting developing 

nations where healthcare systems often rely on opaque predictive tools trained on limited datasets. 

To address these gaps, this study analyzes a comprehensive dataset spanning clinical, physiological, 

and historical health metrics, applying both traditional and advanced machine learning models. By 

incorporating SHapley Additive exPlanations (SHAP) value analysis, the interpretability of risk 

predictions was enhanced while maintaining high diagnostic accuracy. The findings indicate that 

the XGBoost model achieved an impressive accuracy of 96.36%, with body mass index and 

preexisting diabetes emerging as the most significant risk determinants. Clinical insights from 

highly-renowned healthcare providers were actively sought during this study to contextualize the 

model’s implications within real-world clinical practice. These insights enable healthcare providers 

to prioritize high-impact variables when designing interventions, bridging the gap between 

algorithmic outputs and actionable clinical strategies.  
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1. INTRODUCTION 
 

Each year, an estimated 295,000 women lose their lives to pregnancy-related complications, a stark 

reminder of the urgent global health crisis in maternal care [1]. This alarming figure highlights the critical 

need for better strategies to predict, manage, and mitigate risks during pregnancy. Maternal health 

complications such as preeclampsia, postpartum hemorrhage, and sepsis are complex and varied, 

influenced by biological, social, and environmental factors. To address these challenges, a deeper 

understanding of the conditions that increase vulnerability during pregnancy is essential [2, 3]. 

The importance of maternal health risk prediction cannot be overstated. Complications like gestational 

diabetes or preterm birth endanger both mothers and infants, with long-term consequences for families 

and communities [4]. Risks are amplified by factors, such as older maternal age, pre-existing chronic 

illnesses (e.g., hypertension), limited healthcare access, and lifestyle habits like smoking. Women in low-

income or marginalized communities face even greater disparities due to systemic barriers to quality care 

[5]. Compounding these issues is the lack of clinical trial data on medication safety during pregnancy, 

leaving healthcare providers with incomplete guidance [6]. Early detection of risks, paired with timely 

interventions, is therefore vital to safeguarding maternal and fetal health. 

Existing risk assessment tools, such as the Alberta Perinatal Health Program’s 39-item checklist and 

Nigeria’s Community Maternal Danger Score (CMDS), have improved how healthcare systems categorize 

at-risk pregnancies. However, these tools often fall short in terms of accuracy, comprehensiveness, and 

accessibility [7]. For instance, the Alberta tool identifies high-risk cases but fails to prevent poor outcomes 

for many in this group [8]. Similarly, while the CMDS outperforms standard evaluations in detecting risks, 

it fails to provide real-time updates during prenatal visits [9]. Emerging tools like the R4U scorecard reveal 

that non-medical factors, such as income, education, and social support play a pivotal role in pregnancy 

outcomes [10]. These gaps underscore the need for more precise, dynamic, and inclusive risk assessment 

methods to ensure equitable care. 

Machine learning (ML) has emerged as a pivotal tool in enhancing maternal health risk assessment. By 

analyzing vast datasets, encompassing medical histories, demographic trends, and clinical biomarkers, 

ML algorithms can detect subtle patterns linked to complications like preeclampsia or preterm birth 

[11]. This enables earlier, more accurate risk predictions, helping healthcare providers tailor interventions 

to individual needs [12]. As digital health technologies evolve, ML-driven systems are becoming 

indispensable tools for clinicians, offering real-time decision support to reduce preventable deaths 

[13]. This study proposes a new ML-based framework designed to improve risk classification using 

comprehensive, diverse data. By integrating medical and socioeconomic factors, the framework aims to 

empower healthcare teams with actionable insights, fostering safer pregnancies and healthier outcomes 

for mothers and newborns. 

The main objectives of this study are summarized below: 

• This study introduces an inclusive framework for maternal health risk classification using Extreme 

Gradient Boosting (XGBoost) and comprehensive dataset, comprising clinical, physiological, and 

historical health information. 

• The proposed framework is compared with several other traditional and state-of-the-art ML models K-

Nearest Neighbors (KNN), Support Vector Machine (SVM), Decision Trees (DT), Random Forest (RF), 

Logistic Regression (LR), Light Gradient-Boosting Machine (LightGBM), Categorical Boosting 

(CatBoost), and Adaptive Boosting (AdaBoost) to show the efficacy of the proposed model. Furthermore, 
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StratifiedKFold cross-validation is applied to validate its performance complemented by a systematic grid 

search aimed at hyperparameter optimization. 

• The performance of the diverse ML algorithms is rigorously assessed and compared using several metrics, 

including accuracy, precision, recall, F1, area under the precision-recall curve (AUPRC), and cross-

validation scores. Furthermore, Explainable Artificial Intelligence (XAI) methodologies is applied to 

enhance the transparency and usability of the findings. 

The paper is systematically organized to explore the proposed maternal health risk assessment framework. 

Section 2 presents a literature review on existing methodologies and their limitations. Section 3 outlines 

the framework, detailing the dataset, preprocessing, exploratory data analysis, and ML model architecture. 

Section 4 and 5 discusses the results and performance metrics, comparing them with traditional tools, 

while also addressing the implications for maternal health outcomes. Finally, Section 6 concludes the 

document, summarizing key insights and suggesting future research directions. This structure ensures 

clarity and facilitates a smooth transition into the subsequent sections. 

 

2. PERTINENT  STUDIES  
 

ML has emerged as a transformative tool for maternal health risk prediction, offering novel ways to 

address complications such as preeclampsia, gestational diabetes, and perinatal mortality. Recent studies 

emphasize the effectiveness of tree-based models like LightGBM and XGBoost, which have delivered 

strong performance across varied clinical scenarios. For instance, LightGBM achieved 85% accuracy in 

predicting neonatal sepsis by analyzing vital signs and clinical records [14], while XGBoost attained an 

AUC of 0.91 for preeclampsia risk stratification using biomarkers such as blood pressure and uric acid 

levels [15]. Naïve Bayes classifiers also proved highly effective, achieving 97% accuracy in diagnosing 

hypertensive disorders [16], However, these models share a critical limitation: their reliance on 

imbalanced or geographically restricted datasets, such as retrospective public health data from single 

countries or homogeneous patient cohorts, which risks biased generalizability to global populations. 

Beyond data limitations, methodological inconsistencies hinder progress in this field While gradient 

boosting models achieved exceptional accuracy (99%) in classifying fetal health [17],  few studies 

incorporated cross-validation (CV) to ensure reliability [14, 18]. Hybrid frameworks like MaternalNET-

RF, despite their 95% accuracy in risk categorization [19], often neglect tools to explain decision-making 

processes. This lack of transparency is widespread; only a minority of studies [15, 20] have adopted 

interpretability methods like SHapley Additive exPlanations (SHAP) to clarify how factors such as 

maternal body mass index or blood pressure influence predictions. Without such insights, many algorithms 

remain “black boxes,” eroding clinical trust and posing ethical dilemmas, particularly in low-resource 

settings where biased predictions could worsen healthcare inequities. 

These technical challenges intersect with significant ethical risks, especially when models are applied to 

vulnerable populations [21]. For instance, prioritizing sensitivity over explainability as seen in 

LightGBM’s 72.41% performance in detecting intrahepatic cholestasis [22], may undermine patient 

autonomy if clinicians cannot validate algorithmic outputs.  Furthermore, many studies focus narrowly on 

technical metrics while overlooking real-world relevance. Ensemble methods for perinatal mortality 

prediction in Ethiopia [18], which achieved 90% accuracy but relied heavily on region-specific factors 

like insurance access, underscoring the need for culturally adaptive frameworks. This disconnect 

highlights a broader tension between algorithmic precision and practical implementation. 
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Recent efforts to bridge this gap have yielded mixed results like improved accuracy but persistent 

explainability gaps. Generalized additive models (GAMs), for example, identified novel risk factors like 

in-vitro fertilization for postpartum hemorrhage [23], but their modest AUROC (0.67) and lack of 

validation in diverse cohorts limit clinical adoption. Similarly, while CatBoost and AdaBoost have shown 

promise in benchmarking studies [17, 24], their performance remains untested against comprehensive 

datasets integrating demographic, psychophysiological, and clinical variables. This narrow focus on 

isolated conditions, rather than interconnected health factors, impedes the development of universal risk 

assessment tools.  

In summary, the current landscape of maternal health ML research is marked by three unresolved 

challenges: reliance on fragmented or imbalanced data, inconsistent validation practices, and insufficient 

explainability to support clinical adoption. Addressing these limitations requires a paradigm shift towards 

holistic data integration and XAI, as proposed in this study, one that prioritizes robust, transparent 

frameworks trained on diverse data. By integrating CV, XAI, and systematic benchmarking, future models 

can transcend narrow applications to deliver equitable, actionable insights for maternal care. The summary 

of pertinent studies in provided in Table 1. 

Table 1: Summary of Pertinent Literature 

Reference Classifiers Performance  Limitations 

Jathanna, R. D. et al. [14] 

LR, NB, RF, DT, KNN, SVM, 

AdaBoost, Extra Trees, 

Gradient Boosting, Linear 

Discriminant Analysis, 

LightGBM 

Accuracy: 85.36% 

(LightGBM) 

Imbalanced dataset utilized, 

No Explainable AI 

Kovacheva, V. P. et al. [15] XGBoost, LR 
AUC: 91% 

(XGBoost) 

No cross-validation, only 

AUC is evaluated 

Seeta and Shivali [16] DT, SVM, RF, NB, XGBoost 
Accuracy: 97% 

(NB) 

Imbalanced dataset utilized, 

No cross-validation, No 

Explainable AI 

Kaliappan, J. et al [17] 

DT, RF, KNN, NB, SVC, 

AdaBoost, Gradient Boosting, 

Voting classifier, Feed 

Forward Network 

Accuracy: 99% 

(Gradient Boosting) 
Imbalanced dataset utilized 

Bogale, D. S. et al. [18] 
RF, Gradient Boosting, 

CatBoost 

Accuracy: 90.24 

(Gradient Boosting)  

Imbalanced dataset utilized, 

No Explainable AI 

Togunwa, T. O. et al. [19] 

RF, DT, KNN, LR, NB, SVM, 

Extra Trees, LightGBM, 

Gradient Boosting, Linear 

Discriminant Analysis, Ridge, 

Quadratic Discriminant 

Analysis, AdaBoost, Dummy, 

ANN, MaternalNET-RF 

Accuracy: 94.88% 

(MaternalNET-RF) 

Imbalanced dataset utilized, 

No Explainable AI 

Kang, B. S. et al. [20] LightGBM, XGBoost 

AUC: 80.04%, 

 AUPR: 44.02% 

(XGBoost) 

No cross-validation, only 

AUC and AUPR are 

evaluated 

Zhang, X et al [22] LR, RF, LightGBM 
Accuracy: 72.41% 

(LightGBM) 

No cross-validation,  No 

Explainable AI 

Lengerich, B. J. et al. [23] GAM 
AUROC: 67% 

(GAM) 

Imbalanced dataset, only 

AUROC, Recall, and 

Precision were evaluated 
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Assaduzzaman, M. et al. [24] 
DT, RF, CatBoost, XGBoost, 

Gradient Boosting 

Accuracy: 90% 

(RF) 

Imbalanced dataset utilized, 

No cross-validation, No 

Explainable AI 

 

3. MATERIALS & METHODS 
 

3.1  Data Insights and Operational Framework 

The maternal health risk assessment dataset [25] used in this study was sourced from the Mendeley Data 

repository. This dataset aggregates clinical, physiological, and historical health records of maternal 

patients to assess pregnancy-related risk factors. It included eleven health metrics, categorized into three 

domains: metabolic indicators (age, body temperature, blood sugar), cardiovascular parameters (diastolic 

and systolic blood pressure, heart rate), and psychosocial and medical history markers (mental health, 

body mass index (BMI), gestational diabetes, preexisting diabetes, and previous complications). All these 

features were represented as numerical variables. The target variable, designated as Risk Level, was 

categorical and classified into two classes: high risk and low risk. Thus, totaling twelve variables in the 

dataset. The dataset encompasses 1,205 instances, of which 727 (60.3%) were classified as low risk and 

478 (39.7%) as high risk as depicted in Figure 1. Data preprocessing, predictive modeling, and analytical 

evaluations were conducted using Python (v3.10.11) utilizing packages such as numpy (1.21.6), pandas 

(1.3.5), shap (0.40.0), scikit-learn (1.0.2), imbalanced-learn (0.8.1), matplotlib (3.5.2), seaborn (0.11.2). 

 

 

 

 

 

 

 

 

 

Figure 1: Distribution of maternal risk levels. 

 

3.2  Data Preprocessing and Exploratory Data Analysis 

 

The primary preprocessing steps implemented for the analysis included mode imputation to address 

missing values in numerical features and label encoding for the categorical target variable, which assigned 
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binary labels (0 = low-risk class, 1 = high-risk class). Initial statistical evaluation identified biologically 

implausible outliers in the dataset: an age value of 325 and a BMI value of 0, both likely stemming from 

imputation errors. These two low-risk records were corrected by replacing the outliers with median values 

derived from the dataset (age: 25, BMI: 23.0) prior to subsequent analysis and modeling. Key statistical 

descriptors of the processed dataset are summarized in Table 2. To assess variable relationships, 

correlation analysis was conducted as displayed in Figure 2. The risk level demonstrated the strongest 

positive associations with preexisting diabetes (r = 0.67), mental health status (r = 0.63), and blood sugar 

levels (r = 0.59). In contrast, body temperature (r = 0.22) and age (r = 0.18) showed negligible correlations 

with risk classification. 

Table 2: Statistical details of the processed dataset features. 

Statistics Age 
Systolic 

BP 

Diastolic 

BP 

Blood 

Sugar 

Body 

Temp 

Body 

Mass 

Index 

Previous 

Complications 

Preexisting 

Diabetes 

Gestational 

Diabetes 

Mental 

Health 

Heart 

Rate 

Count 1205 1205 1205 1205 1205 1205 1205 1205 1205 1205 1205 

Mean 27.48 116.83 77.18 7.5 98.4 23.33 0.18 0.29 0.12 0.33 75.81 

Std 9.2 18.68 14.28 3.05 1.09 3.79 0.38 0.45 0.32 0.47 7.23 

Min 10 70 40 3 97 15 0 0 0 0 58 

25% 21 100 65 6 98 21 0 0 0 0 70 

50% 25 120 80 6.9 98 23 0 0 0 0 76 

75% 31 130 90 7.9 98 25 0 1 0 1 80 

Max 65 200 140 19 103 37 1 1 1 1 92 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Correlation between risk indicators and maternal risk level. 
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Subsequent exploratory data analysis (EDA) revealed key associations between clinical risk indicators 

and maternal health outcomes, as demonstrated in Figure 3A. Maternal patients aged over 40 years with 

blood sugar levels exceeding 10 mmol/L exhibited higher susceptibility to high-risk classifications, even 

when body temperature remained within normative ranges (98–100°F). Conversely, individuals with 

blood sugar levels below 10 mmol/L were predominantly categorized as low-risk across all age groups. 

Age emerged as a critical determinant of risk stratification, with subjects over 40 years displaying elevated 

risk density, whereas younger participants (<40 years) demonstrated a higher prevalence of low-risk 

classifications. Body temperature exhibited no significant correlation with risk levels, as both high- and 

low-risk cohorts were evenly distributed across observed temperature ranges. These findings underscore 

blood sugar and advanced maternal age as the most salient predictors of adverse pregnancy-related 

outcomes. Furthermore, Figure 3B highlights that systolic blood pressure ≥150 mmHg combined with 

diastolic blood pressure ≥100 mmHg strongly correlated with high-risk designations. In contrast, 

participants with optimal resting heart rates (65–75 bpm) and normotensive blood pressure levels were 

predominantly classified as low-risk. Figure 3C illustrates that previous complications and preexisting 

diabetes were significantly associated with elevated risk profiles. Notably, Figure 3D reinforces BMI as 

an independent risk factor, with higher BMI values corresponding to increased likelihoods of high-risk 

categorization 

. 
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Figure 3: Relationship of risk level with (A) age, blood sugar, and body temperature. (B) systolic 

BP, diastolic BP, and heart rate. (C) gestational diabetes, preexisting diabetes, and previous 

complications. (D) body mass index and mental health. 

 

3.3  Machine Learning Model Execution Framework 

The dataset was split into two subsets: a training set (75% of the data) and a test set (25%). ML models 

were trained on the training subset and evaluated on the test subset to assess generalizability. Prior to 

model development, all features were normalized using Min-Max scaling, which linearly transforms data 

into a fixed range of 0 to 1. This standardization mitigates biases caused by features with disparate 

numerical magnitudes, ensuring equitable contributions from all variables during training. The scaling 

parameters were derived exclusively from the training data, which was both fitted and transformed, while 

the test data underwent transformation only to prevent data leakage. To identify the optimal classifier, a 

comparative performance analysis was conducted across models. Model robustness was further 

strengthened through stratified 10-fold cross-validation, which preserves class distribution in each fold, 

coupled with a grid search strategy for systematic hyperparameter optimization. An XAI technique, SHAP 

was utilize to help explain why the model made specific predictions about maternal health risks. 
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4. RESULTS 

Extensive experiments were conducted to evaluate maternal health risk using multiple ML models across 

varied scenarios. The algorithms' performance was systematically evaluated and compared through 

metrics including accuracy, precision, recall, F1, AUPRC, and CV scores. Key outcomes of this 

comparative analysis are summarized in Table 3. Notably, the XGBoost model demonstrated robust 

predictive performance on the test dataset, achieving an accuracy of 96.36%, with precision and recall 

values of 96.50% and 96.36%, respectively. The harmonized F1-score of 96.37% underscores the model’s 

balanced capacity to minimize both false positives and false negatives. Notably, the AUPRC reached 

99.16%, reflecting exceptional discriminative power in distinguishing between low- and high-risk cases. 

This performance was achieved with hyperparameters optimized through grid search; learning_rate: 0.05, 

max_depth: 3, n_estimators: 500, scale_pos_weight: 1. The model’s consistency is further validated by a 

CV score of 96.00%, indicating stable generalizability across stratified folds. The findings from the 

StratifiedKFold-CV of the XGBoost model is provided in Table 4, to showcase position of XGBoost as a 

highly reliable algorithm for maternal health risk stratification. 

 

Table 3: Comparison of classification matrices of different ML classifiers. 

Model Accuracy Precision Recall F1 AUPRC 
Cross-

Validation 

KNN 0.9769 0.9771 0.9769 0.9769 0.9953 0.9713 

SVM 0.9735 0.9735 0.9735 0.9735 0.9962 0.9712 

DT 0.9503 0.9512 0.9503 0.9505 0.9578 0.9756 

RF 0.9834 0.9841 0.9834 0.9835 0.9982 0.9890 

LR 0.9769 0.9769 0.9769 0.9768 0.9963 0.9701 

LightGBM 0.9834 0.9841 0.9834 0.9835 0.9998 0.9890 

XGBoost 0.9801 0.9806 0.9801 0.9801 0.9988 0.9868 

 CatBoost 0.9801 0.9806 0.9801 0.9801 0.9971 0.9900 

AdaBoost 0.9801 0.9801 0.9801 0.9801 0.9938 0.9890 

 

Table 4: 10-iteration StratifiedKFold cross-validation for the XGBoost classifier. 

Fold Accuracy Precision Recall F1 AUPRC 

0 0.989 1.000 0.972 0.986 1.000 

1 0.967 1.000 0.917 0.957 0.995 

2 0.989 0.973 1.000 0.986 0.998 

3 1.000 1.000 1.000 1.000 1.000 

4 0.989 1.000 0.972 0.986 1.000 

5 0.967 0.946 0.972 0.959 0.995 

6 0.978 0.947 1.000 0.973 0.999 

7 0.989 1.000 0.972 0.986 1.000 

8 1.000 1.000 1.000 1.000 1.000 

9 1.000 1.000 1.000 1.000 1.000 

Mean 0.987 0.987 0.981 0.983 0.999 

Std 0.013 0.023 0.026 0.016 0.002 
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The confusion matrix, illustrated in Figure 4, provides valuable insights into XGBoost model’s 

performance regarding classification of instances into low risk and high risk. The model demonstrates 

strong discriminatory performance, achieving 175 true negatives (correctly identified low-risk cases) 

and 116 true positives (correctly identified high-risk cases). Notably, the low incidence of false negatives 

(2 cases) underscores the model’s sensitivity in detecting high-risk instances, a critical attribute in 

maternal health contexts where overlooking at-risk patients could lead to adverse outcomes. The 9 false 

positives indicate a modest rate of over-prediction for high-risk status, which may reflect a cautious 

approach to risk stratification.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.4: Confusion Matric of XGBoost classifier. 

 

The SHAP analysis of the maternal health risk assessment model as depicted in Figure 5(A-C) revealed 

critical insights into the factors influencing risk predictions. Figure 5A shows the feature importance plot 

of XGBoost model. BMI emerged as the most influential feature, with the highest mean absolute SHAP 

value (1.87), underscoring its pivotal role in maternal health outcomes. This aligns with clinical evidence 

linking elevated BMI to complications such as gestational diabetes, hypertension, and adverse delivery 

outcomes. Preexisting diabetes followed closely with SHAP value of 1.35, reflecting its well-documented 

association with heightened maternal and fetal risks, including macrosomia and preterm birth. Mental 

health (SHAP: 0.95) and heart rate (SHAP: 0.83) were also significant, suggesting that psychological 

stress and cardiovascular strain contribute meaningfully to risk stratification. Notably, gestational diabetes 

(SHAP: 0.76) and blood sugar levels (SHAP: 0.72) reinforced the model’s sensitivity to metabolic 

dysregulation, while systolic blood pressure (SHAP: 0.33) outweighed diastolic measurements (SHAP: 

0.10), potentially indicating its stronger correlation with hypertensive disorders like preeclampsia. Age 

(SHAP: 0.32) and previous complications (SHAP: 0.28) exhibited moderate impacts, possibly reflecting 

dataset demographics or the model’s focus on acute physiological markers over historical or demographic 
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factors. These results validate established clinical risk factors while highlighting underappreciated 

elements like mental health, advocating for holistic prenatal care frameworks. 

Further analysis of risk-specific SHAP summaries, as presented in Figure 5B,C revealed nuanced 

differences in feature interactions between high- and low-risk cohorts. In high-risk cases, BMI and 

preexisting diabetes dominated the risk profile, with hierarchical groupings suggesting synergistic effects, 

for instance, the co-occurrence of elevated BMI and diabetes may amplify cardiovascular or metabolic 

strain. Mental health and heart rate retained prominence across both cohorts, but their directional impacts 

diverged: lower feature values (e.g., stable heart rates) were associated with reduced risk in low-risk cases, 

while deviations correlated with adverse outcomes in high-risk groups. Gestational diabetes and blood 

sugar exhibited stronger positive SHAP values in high-risk scenarios, emphasizing hyperglycemia’s role 

in exacerbating complications. Conversely, in low-risk profiles, features like age and diastolic blood 

pressure showed minimal variability, indicating their limited discriminatory power in healthier 

populations. The model’s emphasis on systolic over diastolic blood pressure in high-risk cases aligns with 

clinical guidelines prioritizing systolic hypertension as a preeclampsia indicator.  
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Figure 5: SHAP analysis for XGBoost (A) Feature importance: top contributing features toward 

prediction, (B) SHAP summary of low risk class, (C) SHAP summary of high risk class. 

5. DISCUSSION 

The findings of this study underscore the transformative potential of ML models in advancing maternal 

health risk assessment. This research highlights the applicability of ML algorithms in addressing a critical 

public health concern i.e. maternal health risk classification. By leveraging the XGBoost model, this study 

demonstrates how advanced predictive tools can facilitate early detection and intervention, ensuring better 

health outcomes for mothers and infants [26]. These results are particularly significant in the context of 

resource-limited settings, where effective risk stratification can guide healthcare providers in prioritizing 

and delivering targeted care. Importantly, the findings emphasize the role of specific maternal health 

indicators, such as body mass index, preexisting diabetes, mental health, and blood sugar levels, in 

assessing risk, offering valuable insights for clinicians and policymakers to refine healthcare strategies 

and improve maternal outcomes. 

In relation to previous studies, the findings of this research corroborate and extend the existing body of 

knowledge. For example, the importance of body mass index and heart rate as critical predictors of 

maternal health risks aligns with the conclusions drawn by Noviandy, T. R. et al. [27], who also identified 

similar health metrics as significant, though their proposed LightGBM model reported an accuracy of 

84.73%. Similarly, while Mutlu, H. B. et al. [28] demonstrated the utility of DT model in classifying 

maternal health risks with an 89.16% accuracy, this study builds upon their work by employing more 

advanced algorithms that yield superior performance. Furthermore, the results of the current study align 

with the work of Ahammad, Md. S. et al. [29], who achieved an accuracy of 93.97% using XGBoost for 

maternal health classification. Table 5 illustrates the performance comparison between the proposed 

model and existing studies, revealing the superiority of the proposed model. Beyond accuracy, the 

integration of explainable artificial intelligence (XAI) techniques, such as SHAP values, further 

distinguishes this study by providing enhanced interpretability. This approach addresses a crucial gap in 

the field by ensuring that healthcare providers can understand and trust the predictions, a factor that is 

often lacking in other ML-based studies. 
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Table 5: Comparison of proposed model with previous studies. 

References Classifier Accuracy 

Noviandy, T. R. et al. [27] LightGBM 84.73% 

Mutlu, H. B. et al. [28] DT 89.16% 

Ahammad, Md. S. et al. [29] XGBoost 93.97% 

Ukrit, M. F. et al. [30] RF 80% 

Maheswari, B. U et al. [31] XGBoost 89.89% 

 

5.1  Ethical Implication, Deployment and Data Privacy 

The ethical implications of deploying ML like XGBoost models in maternal health risk prediction 

necessitate careful consideration. If the training data lacks diversity, such as underrepresenting certain 

demographics or regions, the model may yield biased predictions, disproportionately affecting vulnerable 

populations and exacerbating healthcare disparities. Transparent explainability through techniques like 

SHAP enhances clinician trust, yet overreliance on algorithmic outputs without human oversight could 

compromise patient autonomy. Deployment challenges include integrating models into existing healthcare 

infrastructure, ensuring accessibility in low-resource settings, and training providers to interpret results 

effectively. Biases may arise from imbalanced datasets or preprocessing choices, such as imputing 

outliers, which could skew risk assessments for specific groups. Data privacy remains paramount, as 

health records contain sensitive information; robust anonymization, encryption, and compliance with 

regulations like HIPAA or GDPR are essential to prevent breaches and protect patient confidentiality. 

Addressing these concerns holistically ensures equitable, safe, and trustworthy implementation of AI tools 

in maternal care. 

5.2  Implications of Proposed Approach Concerning Traditional Clinical Methods 

The proposed ML approach addresses key challenges in traditional clinical methods, which often depend 

on manual analysis and standardized checklists that may miss subtle patterns in complex patient data. For 

instance, a gynecologist consulted during this research noted that methods like routine ultrasound or risk 

scorecards, while foundational, can struggle to consistently detect early signs of complications such as 

preeclampsia or gestational diabetes. Human fatigue or oversight during lengthy assessments might delay 

timely interventions. By integrating AI, the model automates data analysis to identify risk factors like 

shifts in blood pressure or blood sugar trends, that might be overlooked in manual reviews. A maternal 

health specialist added that AI tools could act as a "second pair of eyes," supporting clinicians in making 

faster, more informed decisions. However, both professionals stressed that AI should not replace clinical 

expertise but rather enhance it, ensuring doctors retain final judgment while leveraging data-driven 

insights to improve care accuracy and efficiency. 

6. CONCLUSION AND FUTURE RECOMMENDATION 

This study demonstrates the potential of ML in maternal health risk assessment, with the XGBoost model 

achieving 96.36% accuracy as the top performer in analyzing a comprehensive dataset. The integration of 

explainable AI techniques, such as SHAP values, revealed BMI and preexisting diabetes as key risk 

predictors. This research offers significant implications for improving maternal health outcomes, 

particularly in resource-limited settings, and aligns with global efforts to reduce maternal mortality. Future 
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studies should focus on utilizing larger, more diverse datasets to improve model generalizability and 

maternal health risk assessment. Exploring hybrid approaches, such as integrating deep learning with 

ensemble methods, could further enhance predictive accuracy and robustness. Additionally, incorporating 

longitudinal data and unstructured data (e.g., clinical notes or imaging) alongside structured metrics like 

body mass index and blood sugar levels may provide a more holistic view of maternal health risk 

trajectories over time. XAI techniques should be further refined by including domain-specific explanations 

that align with clinical knowledge, enabling practitioners to understand the underlying factors influencing 

model.predictions.  

 

Declaration of Competing Interests 

 

The authors declares that no conflict of interests is associated with this research work. 

 

Data Availability 

 

The dataset used in this research work is publicly available at data.mendeley.com {Maternal Health Rik 

Assessment}. The processed data will be shared upon reasonable request. 

 

Funding 

The author declare that no funds, grants, or other support were received during the research work. 

Author Contribution 

 

M.A. is the sole author of this manuscript and was responsible for all aspects of the research and its 

presentation. This includes conceptualization, data collection, preprocessing, analysis, interpretation of 

results, model development, validation, and writing of the manuscript. Additionally, M.A. conducted the 

literature review, implemented the machine learning models, performed SHAP analysis, and prepared all 

figures and tables. The author also ensured compliance with ethical guidelines and approved the final 

version of the manuscript for submission. 

References 

[1] N. Innab et al., "Automated approach for fetal and maternal health management using light 

gradient boosting model with SHAP explainable AI," Frontiers in Public Health, vol. 12, p. 

1462693, 2024. 

[2] A. Rahman and M. G. R. Alam, "Explainable AI based Maternal Health Risk Prediction using 

Machine Learning and Deep Learning," in 2023 IEEE World AI IoT Congress (AIIoT), 2023: IEEE, 

pp. 0013-0018.  

[3] M. M. Hosaain, M. A. Kashem, and N. M. Nayan, "Artificial Intelligence-Driven Approach for 

Predicting Maternal Health Risk Factors," in 2024 9th South-East Europe Design Automation, 

Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM), 

2024: IEEE, pp. 153-158.  

https://data.mendeley.com/datasets/p5w98dvbbk/1
https://data.mendeley.com/datasets/p5w98dvbbk/1


 Explainable AI in Maternal Health                                                                                                           15                                                                                                   

 

 

 

[4] J. Alipour, A. Payandeh, and A. Karimi, "Prevalence of maternal mortality causes based on ICD-

MM: a systematic review and meta-analysis," BMC Pregnancy and Childbirth, vol. 23, no. 1, p. 

821, 2023. 

[5] R. Musarandega, M. Nyakura, R. Machekano, R. Pattinson, and S. P. Munjanja, "Causes of 

maternal mortality in Sub-Saharan Africa: a systematic review of studies published from 2015 to 

2020," Journal of Global Health, vol. 11, 2021. 

[6] F. Di Martino, F. Delmastro, and C. Dolciotti, "Explainable AI for malnutrition risk prediction 

from m-health and clinical data," Smart Health, vol. 30, p. 100429, 2023. 

[7] C. W. Oei et al., "Explainable Risk Prediction of Post-Stroke Adverse Mental Outcomes Using 

Machine Learning Techniques in a Population of 1780 Patients," Sensors, vol. 23, no. 18, p. 7946, 

2023. 

[8] M. Y. Al-Hindi et al., "Association of antenatal risk score with maternal and neonatal mortality 

and morbidity," Cureus, vol. 12, no. 12, 2020. 

[9] C. O. Nwokoro et al., "Enhancing Maternal Outcome Prediction Using Explainable Artificial 

Intelligence for Women of Childbearing Age," Asian Journal of Science and Applied Technology, 

vol. 12, no. 2, pp. 44-55, 2023. 

[10] S. Lee et al., "Multiclass Classification by Various Machine Learning Algorithms and 

Interpretation of the Risk Factors of Pedestrian Accidents Using Explainable AI," Mathematical 

Problems in Engineering, vol. 2023, no. 1, p. 1956865, 2023. 

[11] G. Wang, H. Bennamoun, W. H. Kwok, R. Marriott, R. Walker, and J. Kotz, "Codesigning a clinical 

prediction model for Aboriginal perinatal mental health using Glassbox AI and Aboriginal wisdom 

and lived experience," in Health. Innovation. Community: It Starts With Us: IOS Press, 2024, pp. 

196-197. 

[12] M. T. Sadiq et al., "Motor imagery EEG signals decoding by multivariate empirical wavelet 

transform-based framework for robust brain–computer interfaces," IEEE access, vol. 7, pp. 

171431-171451, 2019. 

[13] M. W. Moreira, J. J. Rodrigues, F. H. Carvalho, N. Chilamkurti, J. Al-Muhtadi, and V. Denisov, 

"Biomedical data analytics in mobile-health environments for high-risk pregnancy outcome 

prediction," Journal of Ambient Intelligence and Humanized Computing, vol. 10, pp. 4121-4134, 

2019. 

[14] R. D. Jathanna, D. Acharya, L. E. Lewis, and K. Makkithaya, "Early Detection of Late Onset 

Neonatal Sepsis Using Machine Learning Algorithms," Engineered Science, vol. 26, p. 976, 2023. 

[15] V. P. Kovacheva, B. W. Eberhard, R. Y. Cohen, M. Maher, R. Saxena, and K. J. Gray, "Preeclampsia 

prediction using machine learning and polygenic risk scores from clinical and genetic risk factors 

in early and late pregnancies," Hypertension, vol. 81, no. 2, pp. 264-272, 2024. 

[16] S. Devi and S. A. Wagle, "Prediction of Hypertensive Disorders in Pregnancy using Machine 

Learning Algorithms," in 2023 International Conference on Innovative Computing, Intelligent 

Communication and Smart Electrical Systems (ICSES), 2023: IEEE, pp. 1-6.  

[17] J. Kaliappan, A. R. Bagepalli, S. Almal, R. Mishra, Y.-C. Hu, and K. Srinivasan, "Impact of Cross-

validation on Machine Learning models for early detection of intrauterine fetal demise," 

Diagnostics, vol. 13, no. 10, p. 1692, 2023. 

[18] D. S. Bogale, T. M. Abuhay, and B. E. Dejene, "Predicting perinatal mortality based on maternal 

health status and health insurance service using homogeneous ensemble machine learning 

methods," BMC Medical Informatics and Decision Making, vol. 22, no. 1, p. 341, 2022. 



16                                                                                International Journal of Emerging Multidiciplinaries 

 

[19] T. O. Togunwa, A. O. Babatunde, and K.-u.-R. Abdullah, "Deep hybrid model for maternal health 

risk classification in pregnancy: synergy of ANN and random forest," Frontiers in Artificial 

Intelligence, vol. 6, p. 1213436, 2023. 

[20] B. S. Kang et al., "Prediction of gestational diabetes mellitus in Asian women using machine 

learning algorithms," Scientific Reports, vol. 13, no. 1, p. 13356, 2023. 

[21] M. H. Tilala et al., "Ethical considerations in the use of artificial intelligence and machine learning 

in health care: a comprehensive review," Cureus, vol. 16, no. 6, p. e62443, 2024. 

[22] X. Zhang et al., "Prediction of intrahepatic cholestasis of pregnancy in the first 20 weeks of 

pregnancy," The Journal of Maternal-Fetal & Neonatal Medicine, vol. 35, no. 25, pp. 6329-6335, 

2022. 

[23] B. J. Lengerich, R. Caruana, I. Painter, W. B. Weeks, K. Sitcov, and V. Souter, "Interpretable 

Machine Learning Predicts Postpartum Hemorrhage with Severe Maternal Morbidity in a Lower 

Risk Laboring Obstetric Population," American Journal of Obstetrics & Gynecology MFM, p. 

101391, 2024. 

[24] M. Assaduzzaman, A. Al Mamun, and M. Z. Hasan, "Early prediction of maternal health risk 

factors using machine learning techniques," in 2023 international conference for advancement in 

technology (ICONAT), 2023: IEEE, pp. 1-6.  

[25] M. A. Mayen Uddin Mojumdar, Dhiman Sarker, Hasin Arman Shifa, Md. Anisul Haque Sajeeb, 

Shadikul Bari, Narayan Ranjan Chakraborty, Mohammad Jahangir Alam, "Maternal Health Risk 

Assessment Dataset," Mendeley Data, vol. 1, 2024, doi: 10.17632/p5w98dvbbk.1. 

[26] S. A. Mapari et al., "Revolutionizing Maternal Health: The Role of Artificial Intelligence in 

Enhancing Care and Accessibility," Cureus, vol. 16, no. 9, p. e69555, 2024. 

[27] T. R. Noviandy, S. I. Nainggolan, R. Raihan, I. Firmansyah, and R. Idroes, "Maternal Health Risk 

Detection Using Light Gradient Boosting Machine Approach," Infolitika Journal of Data Science, 

vol. 1, no. 2, pp. 48-55, 2023. 

[28] H. B. Mutlu, F. Durmaz, N. Yücel, E. Cengil, and M. Yıldırım, "Prediction of maternal health risk 

with traditional machine learning methods," Naturengs, vol. 4, no. 1, pp. 16-23, 2023. 

[29] M. S. Ahammad, S. A. Sinthia, M. Hossain, M. M. Ahmed, and M. Ghosh, "Empowering Maternal 

Health in Bangladesh: Advanced Risk Prediction with Machine Learning," in 2024 15th 

International Conference on Computing Communication and Networking Technologies 

(ICCCNT), 2024: IEEE, pp. 1-6.  

[30] M. F. Ukrit, R. B. Jeyavathana, A. L. Rani, and V. Chandana, "Maternal Health Risk Prediction 

with Machine Learning Methods," in 2024 Second International Conference on Emerging Trends 

in Information Technology and Engineering (ICETITE), 2024: IEEE, pp. 1-9.  

[31] B. U. Maheswari, A. Dixit, and A. K. Karn, "Machine Learning Algorithm for Maternal Health 

Risk Classification with SMOTE and Explainable AI," in 2024 IEEE 9th International Conference 

for Convergence in Technology (I2CT), 2024: IEEE, pp. 1-6.  

 

 

 

 

 

 


